TNOs and similar bodies |
---|
*Trans-Neptunian dwarf planets are "plutoids" |
The centaurs are an unstable orbital class of minor planets named after the mythological race of centaurs. The name was chosen because they behave as half asteroid and half comet. Centaurs have transient orbits that cross or have crossed the orbits of one or more of the giant planets, and have dynamical lifetimes of a few million years.[1]
The first centaur-like object to be discovered was 944 Hidalgo in 1920. However, they were not recognized as a distinct population until the discovery of 2060 Chiron in 1977. The largest known centaur is 10199 Chariklo, discovered in 1997, which at 260 km in diameter is as big as a mid-sized main-belt asteroid.
No centaur has been photographed up close, although there is evidence that Saturn's moon Phoebe, imaged by the Cassini probe in 2004, may be a captured centaur. In addition, the Hubble Space Telescope has gleaned some information about the surface features of 8405 Asbolus.
As of 2008[update], three centaurs have been found to display cometary comas: Chiron, 60558 Echeclus, and 166P/NEAT. Chiron and Echeclus are therefore classified as both asteroids and comets. Other centaurs such as 52872 Okyrhoe are suspected of showing cometary activity. Any centaur that is perturbed close enough to the Sun is expected to become a comet.
Classification
The generic definition of a centaur is a small body that orbits the Sun between Jupiter and Neptune and crosses the orbits of one or more of the giant planets. Due to the inherent long-term instability of orbits in this region, even centaurs such as 2000 GM137 and 2001 XZ255, which do not currently cross the orbit of any planet, are in gradually changing orbits that will be perturbed until they start to cross the orbit of one or more of the giant planets.[1]
However, different institutions have different criteria for classifying borderline objects, based on particular values of their orbital elements:
- The Minor Planet Center (MPC) defines centaurs as having a perihelion beyond the orbit of Jupiter and a semi-major axis less than that of Neptune.[2]
- The Jet Propulsion Laboratory (JPL) similarly defines centaurs as having a semi-major axis, a, between those of Jupiter and Neptune (5.5 AU < a < id="cite_ref-jplcent_2-0" class="reference">[3]
- In contrast, the Deep Ecliptic Survey (DES) defines centaurs using a dynamical classification scheme. These classifications are based on the simulated change in behavior of the present orbit when extended over 10 million years. The DES defines centaurs as non-resonant objects whose instantaneous (osculating) perihelia are less than the osculating semi-major axis of Neptune at any time during the simulation. This definition is intended to be synonymous with planet-crossing orbits and to suggest comparatively short lifetimes in the current orbit.[4]
The collection The Solar System Beyond Neptune (2008) uses the traditional definition of Centaurs, limited to semi-major axes smaller than that of Neptune, classifying the objects on unstable orbits beyond this limit as members of the scattered disk.[5] Yet, other astronomers still prefer to define centaurs as objects that are non-resonant with a perihelion inside the orbit of Neptune that can be shown to likely cross the hill sphere of a gas giant within the next 10 million years.[6] Thus centaurs can be thought of as inward scattered objects that interact more aggressively and scatter more quickly than typical scattered disc objects.
These differences in classification methods make it difficult to classify objects like (44594) 1999 OX3, which has a semi-major axis of 32 AU but crosses the orbits of both Uranus and Neptune. Among the inner centaurs, 2005 VD, with a perihelion distance very near Jupiter, is listed as a centaur by both JPL and DES.
Orbits
Distribution
The diagram at right illustrates the orbits of all known centaurs in relation to the orbits of the planets. For selected objects, the eccentricity of the orbits is represented by red segments (extending from perihelion to aphelion).
Centaurs' orbits are characterised by a wide range of eccentricity, from highly eccentric (Pholus, Asbolus, Amicus, Nessus) to more circular (Chariklo and the Saturn-crossers: Thereus, Okyrhoe).
To illustrate the range of the orbits' parameters, a few objects with very unusual orbits are plotted in yellow on the diagram:
- 1999 XS35 (Apollo asteroid) follows an extremely eccentric orbit (e=0.947), leading it from inside of the Earth's orbit (0.94 AU) to well beyond Neptune (>34 AU)
- 2007 TB434 follows a quasi-circular orbit (e<0.026)
- 2001 XZ255 has the lowest inclination (i<3°).
- Damocles is among a few centaurs on orbits with extreme inclination (prograde i>70°, e.g. 2007 DA61, 2004 YH32, retrograde i<120° style="white-space: nowrap;">2005 JT50; not shown)
- 2004 YH32 follows such a highly inclined orbit (nearly 80°) that, while it crosses from the distance of the Main belt from the Sun to past the distance of Saturn, it does not even cross Jupiter relative to the plane of Jupiter's orbit.
A dozen known centaurs, including Dioretsa ("asteroid" spelled backwards), follow retrograde orbits.
Changing orbits
Since the centaurs cross the orbits of the giant planets and are not protected by orbital resonances, their orbits are unstable within a timescale of 106 –107 years.[8] For example, 55576 Amycus is in an unstable orbit near the 3:4 resonance of Uranus.[1] Dynamical studies of their orbits indicate that centaurs are probably an intermediate orbital state of objects transitioning from the Kuiper Belt to the Jupiter family of short period comets. Objects may be perturbed from the Kuiper Belt, whereupon they become Neptune-crossing and interact gravitationally with that planet (see theories of origin). They then become classed as centaurs, but their orbits are chaotic, evolving relatively rapidly as the centaur makes repeated close approaches to one or more of the outer planets. Some centaurs will evolve into Jupiter-crossing orbits whereupon their perihelia may become reduced into the inner solar system and they may be reclassified as active comets in the Jupiter family if they display cometary activity. Centaurs will thus ultimately collide with the Sun or a planet or else they may be ejected into interstellar space after a close approach to one of the planets, particularly Jupiter.
Physical characteristics
The relatively small size of centaurs precludes surface observations, but colour indices and spectra can indicate possible surface composition and can provide insight into the origin of the bodies.[8]
Colours
Centaurs display a puzzling diversity of colour that challenges any simple model of surface composition[9]. In the diagram on the right, the colour indices are measures of apparent magnitude of an object through blue (B), visible (V) i.e. green-yellow and red (R) filters. The diagram illustrates these differences (in enhanced colour) for all centaurs with known colour indices. For reference, two moons: Triton and Phoebe, and planet Mars are plotted (yellow labels, size not to scale).
Centaurs appear to be grouped into two classes:
- very red, for example 5145 Pholus
- blue (or blue-grey, according to some authors), for example 2060 Chiron
There are numerous theories to explain this colour difference, but they can be divided broadly into two categories:
- The colour difference results from a difference in the origin and/or composition of the centaur (see origin below)
- The colour difference reflects a different level of space weathering from radiation and/or cometary activity.
As examples of the second category, the reddish colour of Pholus has been explained as a possible mantle of irradiated red organics, whereas Chiron has instead had its ice exposed due to its periodic cometary activity, giving it a blue/grey index. The correlation with activity and color is not certain, however, as the active centaurs span the range of colors from blue (Chiron) to red (166P/NEAT).[10] Alternatively, Pholus may have been only recently expelled from the Kuiper Belt, so that surface transformation processes have not yet taken place.
A. Delsanti et al. suggest multiple competing processes: reddening by the radiation, and blushing by collisions.[11] [12]
Spectra
The interpretation of spectra is often ambiguous, related to particle sizes and other factors, but the spectra offer an insight into surface composition. As with the colours, the observed spectra can fit a number of models of the surface.
Water ice signatures have been confirmed on a number of centaurs[8] (including 2060 Chiron, 10199 Chariklo and 5145 Pholus). In addition to the water ice signature, a number of other models have been put forward:
- Chariklo's surface has been suggested to be a mixture of tholins (like those detected on Titan and Triton) with amorphous carbon.
- Pholus has been suggested to be covered by a mixture of Titan-like tholins, carbon black, olivine[13] and methanol ice.
- The surface of 52872 Okyrhoe has been suggested to be a mixture of kerogens, olivines and small percentage of water ice.
- 8405 Asbolus has been suggested to be a mixture of 15% Triton-like tholins, 8% Titan-like tholin, 37% amorphous carbon and 40% ice tholin.
Chiron, the only centaur with known cometary activity, appears to be the most complex. The spectra observed vary depending on the period of the observation. Water ice signature was detected during a period of low activity and disappeared during high activity. [15] [16] [17]
Similarities to comets
Observations of Chiron in 1988 and 1989 near its perihelion found it to display a coma (a cloud gas and dust evaporating from its surface). It is thus now officially classified as both a comet and an asteroid, although it is far larger than a typical comet and there is some lingering controversy. Other centaurs are being monitored for comet-like activity: so far two, 60558 Echeclus, and 166P/NEAT have shown such behavior. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet, though its orbit is that of a centaur. 60558 Echeclus was discovered without a coma but recently became active[18] , and so it is now accordingly also classified as both a comet and an asteroid.
There is no clear orbital distinction between centaurs and comets. Both 29P/Schwassmann-Wachmann and 39P/Oterma have been referred to as centaurs since they have typical centaur orbits. The comet 39P/Oterma is currently inactive and was seen to be active only before it was perturbed into a Centaur orbit by Jupiter in 1963.[19] The faint comet 38P/Stephan-Oterma likely would not show a coma if it had a perihelion distance beyond Jupiter's orbit at 5 AU. By the year 2200, comet 78P/Gehrels will likely migrate outwards into a centaur-like orbit.
Theories of origin
The study of centaur development is rich in recent developments but still hampered by limited physical data. Different models have been put forward for possible origin of centaurs.
Simulations indicate that the orbit of some Kuiper Belt objects can be perturbed, resulting in the object's expulsion so that it becomes a centaur. Scattered disk objects would be dynamically the best candidates[20] for such expulsions, but their colours do not fit the bicoloured nature of the centaurs. Plutinos are a class of Kuiper Belt Object that display a similar bicoloured nature, and there are suggestions that not all plutinos' orbits are as stable as initially thought, due to perturbation by Pluto.[21] Further developments are expected with more physical data on KBOs.
Notable centaurs
Well-known centaurs include:
Name | Year | Discoverer | Half-life[1]
(forward) | Class |
---|---|---|---|---|
55576 Amycus | 2002 | NEAT at Palomar | 11.1 Myr | UE |
10370 Hylonome | 1995 | Mauna Kea Observatory | 6.3 Myr | UN |
10199 Chariklo | 1997 | Spacewatch | 10.3 Myr | U |
8405 Asbolus | 1995 | Spacewatch (James V. Scotti) | 860 kiloannum | SN |
7066 Nessus | 1993 | Spacewatch (David L. Rabinowitz) | 4.9 Myr | SE |
5145 Pholus | 1992 | Spacewatch (David L. Rabinowitz) | 1.28 Myr | SN |
2060 Chiron | 1977 | Charles T. Kowal | 1.03 Myr | SU |
Notes
- ^ For the purpose of this diagram, an object is classified as a centaur if its semi-major axis lies between Jupiter and Neptune. Last update: October 2008
References
- ^ a b c d Horner, J.; Evans, N.W.; Bailey, M. E. (2004). Simulations of the Population of Centaurs I: The Bulk Statistics. http://arxiv.org/abs/astro-ph?papernum=0407400. Retrieved on 2008-09-22.
- ^ "Unusual Minor Planets". Minor Planet Center. http://www.cfa.harvard.edu/iau/lists/Unusual.html. Retrieved on 2009-03-16.
- ^ "Orbit Classification (Centaur)". JPL Solar System Dynamics. http://ssd.jpl.nasa.gov/sbdb_help.cgi?class=CEN. Retrieved on 2008-10-13.
- ^ Elliot, J.L.; Kern, Buie, Trilling; et al. (2005). "The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population". The Astronomical Journal 129: 1117–1162. doi:. http://www.iop.org/EJ/abstract/1538-3881/129/2/1117. Retrieved on 2008-09-22.
- ^ B. Gladman, B. Marsden, C. VanLaerhoven (2008). "Nomenclature in the Outer Solar System". in The Solar System Beyond Neptune, ISBN 987-0-8165-2755-7.
- ^ Chaing, Eugene; Buie, Grundy, Holman; et al. (2007). "A Brief History of Transneptunian Space". Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson: 895–911. http://adsabs.harvard.edu/abs/2006astro.ph..1654C. Retrieved on 2009-05-15.
- ^ "Three clones of Centaur 8405 Asbolus making passes within 450Gm". http://home.comcast.net/~kpheider/AsbolusClones.txt. Retrieved on 2009-05-02. (Solex 10)
- ^ a b c Jewitt, David C.; A. Delsanti (2006). "The Solar System Beyond The Planets". Solar System Update : Topical and Timely Reviews in Solar System Sciences. Springer-Praxis Ed.. ISBN 3-540-26056-0. (Preprint version (pdf))
- ^ M. A. Barucci, A. Doressoundiram, and D. P. Cruikshank, "Physical Characteristics of TNOs and Centaurs" (2003), available on the web (accessed 3/20/2008)
- ^ Bauer, J. M., Fernández, Y. R., & Meech, K. J. 2003. "An Optical Survey of the Active Centaur C/NEAT (2001 T4)", Publication of the Astronomical Society of the Pacific", 115, 981 [1]
- ^ N. Peixinho1, A. Doressoundiram1, A. Delsanti, H. Boehnhardt, M. A. Barucci, and I. Belskaya Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality Astronomy and Astrophysics, 410, L29-L32 (2003). Preprint on arXiv
- ^ Hainaut & Delsanti (2002) Color of Minor Bodies in the Outer Solar System Astronomy & Astrophysics, 389, 641 datasource
- ^ A class of Magnesium Iron Silicates (Mg, Fe)2SiO4, common components of igneous rocks.
- ^ "JPL Close-Approach Data: 38P/Stephan-Oterma". 1981-04-04 last obs. http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=38P;orb=0;cov=0;log=0;cad=1#cad. Retrieved on 2009-05-07.
- ^ Dotto, E; Barucci, M A; De Bergh, C, Colours and composition of the centaurs, Earth, Moon, and Planets, 92, no. 1-4, pp. 157-167. (June 2003)
- ^ Jane X. Luu, David Jewitt and C. A. Trujillo Water Ice on 2060 Chiron and its Implications for Centaurs and Kuiper Belt Objects, The Astrophysical Journal, 531 (2000),L151-L154. Preprint on arXiv.
- ^ Y. R. Fernandez, D. C. Jewitt, S. S. Sheppard Thermal Properties of Centaurs Asbolus and Chiron, The Astronomical Journal, 123 (Feb. 2002),1050–1055. Preprint on arXiv.
- ^ Y-J. Choi, P.R. Weissman, and D. Polishook (60558) 2000 EC_98, IAU Circ., 8656 (Jan. 2006), 2.
- ^ Mazzotta Epifani; Palumbo; Capria; Cremonese;; et al. (2006). "The dust coma of the active Centaur P/2004 A1 (LONEOS): a CO-driven environment?". Astronomy & Astrophysics 460 (3): 935–944. doi:. http://209.85.173.132/search?q=cache:www.aanda.org/articles/aa/ps/2006/48/aa5189-06.ps.gz. Retrieved on 2009-05-08.
- ^ for instance, the centaurs could be part of an "inner" scattered disc of objects perturbed inwards from the Kuiper belt [2].
- ^ Wan, X.-S; Huang, T.-Y. (2001). "The orbit evolution of 32 plutinos over 100 million year". Astronomy and Astrophysics 368: 700–705. doi:. http://adsabs.harvard.edu/abs/2001A&A...368..700W. Retrieved on 2008-02-21.
0 comments:
Post a Comment