For many thousands of years, humanity, with a few notable exceptions, did not recognise the existence of the Solar System. They believed the Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Indian mathematician-astronomer Aryabhata and the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos,[1] Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system. His 17th-century successors Galileo Galilei, Johannes Kepler, and Isaac Newton developed an understanding of physics which led to the gradual acceptance of the idea that the Earth moves around the Sun and that the planets are governed by the same physical laws that governed the Earth. In more recent times, improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena such as mountains and craters and seasonal meteorological phenomena such as clouds, dust storms and ice caps on the other planets.
The mass of the Sun compared to the remaining bodies of the Solar System. Objects smaller than Saturn are not visible at this scale | The relative masses of the Solar planets. Jupiter at 71% of the total and Saturn at 21% dominate the system. Mercury and Mars, which together are less than 0.1%,are not visible at this scale |
The principal component of the Solar System is the Sun, a main sequence G2 star that contains 99.86 percent of the system's known mass and dominates it gravitationally.[2] Jupiter and Saturn, the Sun's two largest orbiting bodies, account for more than 90 percent of the remaining mass.[c]
Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic while comets and Kuiper belt objects are frequently at significantly greater angles to it.[3][4]
All of the planets and most other objects also orbit with the Sun's rotation (counter-clockwise, as viewed from above the Sun's north pole). There are exceptions, such as Halley's Comet.
Kepler's laws of planetary motion describe the orbits of objects about the Sun. According to Kepler's laws, each object travels along an ellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) have shorter years. On an elliptical orbit, a body's distance from the Sun varies over the course of its year. A body's closest approach to the Sun is called its perihelion, while its most distant point from the Sun is called its aphelion. Each body moves fastest at its perihelion and slowest at its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids and Kuiper belt objects follow highly elliptical orbits.
To cope with the vast distances involved, many representations of the Solar System show orbits the same distance apart. In reality, with a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between it and the previous orbit. For example, Venus is approximately 0.33 astronomical units (AU)[d] farther out than Mercury, while Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus. Attempts have been made to determine a correlation between these orbital distances (see Titius-Bode law),[5] but no such theory has been accepted.
Most of the planets in the Solar System possess secondary systems of their own. Many are in turn orbited by planetary objects called natural satellites, or moons, some of which are larger than planets. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent. The four largest planets, the gas giants, also possess planetary rings, thin bands of tiny particles that orbit them in unison.
Terminology About Solar System
Informally, the Solar System is sometimes divided into separate regions. The inner Solar System includes the four terrestrial planets and the main asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giant planets.[6] Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.[7]
Dynamically and physically, objects orbiting the Sun are officially classed into three categories: planets, dwarf planets and small Solar System bodies. A planet is any body in orbit around the Sun that has enough mass to form itself into a spherical shape and has cleared its immediate neighbourhood of all smaller objects. By this definition, the Solar System has eight known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto does not fit this definition, as it has not cleared its orbit of surrounding Kuiper belt objects.[8] A dwarf planet is a celestial body orbiting the Sun that is massive enough to be rounded by its own gravity but which has not cleared its neighbouring region of planetesimals and is not a satellite.[8] By this definition, the Solar System has five known dwarf planets: Ceres, Pluto, Haumea, Makemake, and Eris.[9] Other objects may be classified in the future as dwarf planets, such as Sedna, Orcus, and Quaoar.[10] Dwarf planets that orbit in the trans-Neptunian region are called "plutoids".[11] The remainder of the objects in orbit around the Sun are small Solar System bodies.[8]
Planetary scientists use the terms gas, ice, and rock to describe the various classes of substances found throughout the Solar System.[12] Rock is used to describe compounds with high melting points that remained solid under almost all conditions in the protoplanetary nebula.[12] Rocky substances typically include silicates and metals such as iron and nickel.[13] They are prevalent in the inner Solar System, forming most of the terrestrial planets and asteroids. Gases are materials with extremely low melting points and high vapor pressure such as molecular hydrogen, helium, and neon, which were always in the gaseous phase in the nebula.[12] They dominate the middle region, comprising most of Jupiter and Saturn. Ices, like water, methane, ammonia, hydrogen sulfide and carbon dioxide,[13] have melting points up to a few hundred kelvins, while their phase depends on the ambient pressure and temperature.[12] They can be found as ices, liquids, or gases in various places in the Solar System, while in the nebula they were either in the solid or gaseous phase.[12] Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called "ice giants") and the numerous small objects that lie beyond Neptune's orbit.[13][14] Together, gases and ices are referred to as volatiles.


The Sun is classified as a moderately large yellow dwarf, but this name is misleading as, compared to majority of stars in our galaxy, the Sun is rather large and bright.[17] Stars are classified by the Hertzsprung-Russell diagram, a graph which plots the brightness of stars against their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence, and the Sun lies right in the middle of it. However, stars brighter and hotter than the Sun are rare, while substantially dimmer and cooler stars, known as red dwarfs, are common, making up 85 percent of the stars in the galaxy.[17][18]
It is believed that the Sun's position on the main sequence puts it in the "prime of life" for a star, in that it has not yet exhausted its store of hydrogen for nuclear fusion. The Sun is growing brighter; early in its history it was 70 percent as bright as it is today.[19]
The Sun is a population I star; it was born in the later stages of the universe's evolution, and thus contains more elements heavier than hydrogen and helium ("metals" in astronomical parlance) than older population II stars.[20] Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, while stars born later have more. This high metallicity is thought to have been crucial to the Sun's developing a planetary system, because planets form from accretion of metals.[21
0 comments:
Post a Comment