PLANET VENUS Wednesday, June 17, 2009

Venus (pronounced /ˈviːnəs/ (help·info)) is the second-closest planet to the Sun, orbiting it every 224.7 Earth days. The planet is named after Venus, the Roman goddess of love. Except for the Moon it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it is often called the Morning Star or the Evening Star.
Classified as a terrestrial planet, it is sometimes called Earth's "sister planet," because they are similar in size, gravity, and bulk composition. Venus is covered with an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus has the densest atmosphere of all the terrestrial planets, consisting mostly of carbon dioxide, as it has no carbon cycle to lock carbon back into rocks and surface features, nor organic life to absorb it in biomass. A younger Venus is believed to have possessed Earth-like oceans,[8] but these totally evaporated as the temperature rose, leaving a dusty dry desertscape with many slab-like rocks. The water has most likely dissociated, and, because of the lack of a planetary magnetic field, the hydrogen has been swept into interplanetary space by the solar wind.[9] The atmospheric pressure at the planet's surface is 92 times that of the Earth.
Venus' surface was a subject of speculation until some of its secrets were revealed by planetary science in the twentieth century. It was finally mapped in detail by Project Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate that there have been some recent eruptions.[10][11] However, it is an enigma why no evidence of lava flow accompanies any of the visible caldera. There are a low number of impact craters, demonstrating that the surface is relatively young, approximately half a billion years old. There is no evidence for plate tectonics, possibly because its crust is too strong to subduct without water to make it less viscous. Instead, Venus may lose its internal heat in periodic massive resurfacing events.[12]
The adjective Venusian is commonly used for items related to Venus, though the Latin adjective is the rarely used Venerean; the archaic Cytherean is still occasionally encountered. Venus is the only planet in the Solar System named after a female figure,[a] although three dwarf planetsCeres, Eris and Haumea — also have feminine names

PHYSICAL CHARACTERISTICS
Venus is one of the four solar terrestrial planets, meaning that, like the Earth, it is a rocky body. In size and mass, it is very similar to the Earth, and is often described as its 'sister'. The diameter of Venus is only 650 km less than the Earth's, and its mass is 81.5% of the Earth's. However, conditions on the Venusian surface differ radically from those on Earth, due to its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% composed of nitrogen.[13]
Internal structure
Without seismic data or knowledge of its moment of inertia, there is little direct information about the internal structure and geochemistry of Venus.[14] However, the similarity in size and density between Venus and Earth suggests that they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is thought to be at least partially liquid. The slightly smaller size of Venus suggests that pressures are significantly lower in its deep interior than Earth. The principal difference between the two planets is the lack of plate tectonics on Venus, likely due to the dry surface and mantle. This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field.[15]

Geography
About 80% of Venus's surface consists of smooth volcanic plains. Two highland 'continents' make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent is called Ishtar Terra, after Ishtar, the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes, the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km above Venus's average surface elevation. The southern continent is called Aphrodite Terra, after the Greek goddess of love, and is the larger of the two highland regions at roughly the size of South America. A network of fractures and faults covers much of this area.[16]
As well as the impact craters, mountains, and valleys commonly found on rocky planets, Venus has a number of unique surface features. Among these are flat-topped volcanic features called farra, which look somewhat like pancakes and range in size from 20–50 km across, and 100–1,000 m high; radial, star-like fracture systems called novae; features with both radial and concentric fractures resembling spiders' webs, known as arachnoids; and coronae, circular rings of fractures sometimes surrounded by a depression. All of these features are volcanic in origin.[17]
Almost all Venusian surface features are named after historical and mythological women.[18] The only exceptions are Maxwell Montes, named after James Clerk Maxwell, and two highland regions, Alpha Regio and Beta Regio. These three features were named before the current system was adopted by the International Astronomical Union, the body that oversees planetary nomenclature.[19]
Cartesian coordinates of physical features on Venus are expressed relative to its prime meridian, defined as the line of longitude passing through a radar-bright spot at the center of the oval feature Eve, which lies to the south of Alpha Regio.[20][21]

Surface geology
Main article: Geology of Venus
Much of Venus's surface appears to have been shaped by volcanic activity. Overall, Venus has several times as many volcanoes as Earth, and it possesses some 167 giant volcanoes that are over 100 km across. The only volcanic complex of this size on Earth is the Big Island of Hawaii.[17] However, this is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years,[22] while Venus's surface is estimated to be about 500 million years old.[17]
Several lines of evidence point to ongoing volcanic activity on Venus. During the Soviet Venera program, the Venera 11 and Venera 12 probes detected a constant stream of lightning, and Venera 12 recorded a powerful clap of thunder soon after it landed. The European Space Agency's Venus Express recorded abundant lightning in the high atmosphere.[23] While rainfall drives thunderstorms on Earth, there is no rainfall on the surface of Venus (though it does rain sulfuric acid in the upper atmosphere that evaporates around 25 km above the surface). One possibility is that ash from a volcanic eruption was generating the lightning. Another piece of evidence comes from measurements of sulfur dioxide concentrations in the atmosphere, which were found to drop by a factor of 10 between 1978 and 1986. This may imply that the levels had earlier been boosted by a large volcanic eruption.[24]
There are almost a thousand impact craters on Venus, more or less evenly distributed across its surface. On other cratered bodies, such as the Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, while on Earth, it is caused by wind and rain erosion. However, on Venus, about 85% of craters are in pristine condition. The number of craters together with their well-preserved condition indicates that the planet underwent a global resurfacing event about 500 million years ago.[25] Earth's crust is in continuous motion, but it is thought that Venus cannot sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.[17]
Venusian craters range from 3 km to 280 km in diameter. There are no craters smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed down so much by the atmosphere that they do not create an impact crater.[26]

Atmosphere and climate
Main article: Atmosphere of Venus
Venus has an extremely dense atmosphere, which consists mainly of carbon dioxide and a small amount of nitrogen. The atmospheric mass is 93 times that of Earth's atmosphere while the pressure at the planet's surface is about 92 times that at Earth's surface—a pressure equivalent to that at a depth of nearly 1 kilometer under Earth's oceans. The density at the surface is 65 kg/m³ (6.5% that of water). The CO2-rich atmosphere, along with thick clouds of sulfur dioxide, generates the strongest greenhouse effect in the solar system, creating surface temperatures of over 460 °C (860 °F).[27] This makes Venus's surface hotter than Mercury's which has a minimum surface temperature of -220 °C and maximum surface temperature of 420 °C, even though Venus is nearly twice Mercury's distance from the Sun and receives only 25% of Mercury's solar irradiance.
Studies have suggested that several billion years ago Venus's atmosphere was much more like Earth's than it is now, and that there were probably substantial quantities of liquid water on the surface, but a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere.[28] Thermal inertia and the transfer of heat by winds in the lower atmosphere mean that the temperature of Venus's surface does not vary significantly between the night and day sides, despite the planet's extremely slow rotation. Winds at the surface are slow, moving at a few kilometers per hour, but because of the high density of the atmosphere at Venus's surface, they exert a significant amount of force against obstructions, and transport dust and small stones across the surface. This alone would make it difficult for a human to walk through, even if the heat were not a problem.[29] Above the dense CO2 layer are thick clouds consisting mainly of sulfur dioxide and sulfuric acid droplets.[30][31] These clouds reflect about 60% of the sunlight that falls on them back into space, and prevent the direct observation of Venus's surface in visible light. The permanent cloud cover means that although Venus is closer than Earth to the Sun, the Venusian surface is not as well lit. In the absence of the greenhouse effect caused by the carbon dioxide in the atmosphere, the temperature at the surface of Venus would be quite similar to that on Earth. Strong 300 km/h winds at the cloud tops circle the planet about every four to five earth days.[32]
The surface of Venus is effectively isothermal; it retains a constant temperature between day and night and between the equator and the poles.[1][33] The planet's minute axial tilt (less than three degrees, compared with 23 degrees for Earth), also minimizes seasonal temperature variation.[34] The only appreciable variation in temperature occurs with altitude. In 1995, the Magellan probe imaged a highly reflective substance at the tops of Venus's highest mountain peaks which bore a strong resemblance to terrestrial snow. This substance arguably formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gas form to cooler higher elevations, where it then fell as precipitation. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).[35]
The clouds of Venus are capable of producing lightning much like the clouds on Earth.[36] The existence of lightning had been controversial since the first suspected bursts were detected by the Soviet Venera probes. However, in 2006–2007 Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. The lightning rate is at least half of that on Earth.[36] In 2007 the Venus Express probe discovered that a huge double atmospheric vortex exists at the south pole of the planet.[37][38]

Magnetic field and core
In 1980, The Pioneer Venus Orbiter found that Venus's magnetic field is both weaker and smaller (i.e. closer to the planet) than Earth's. What small magnetic field is present is induced by an interaction between the ionosphere and the solar wind,[39] rather than by an internal dynamo in the core like the one inside the Earth. Venus's magnetosphere is too weak to protect the atmosphere from cosmic radiation.
The lack of an intrinsic magnetic field at Venus was surprising given that it is similar to Earth in size, and was expected also to contain a dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive and, while its rotation is often thought to be too slow, simulations show that it is adequate to produce a dynamo.[40][41] This implies that the dynamo is missing because of a lack of convection in Venus's core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much hotter than the top. Since Venus has no plate tectonics to let off heat, it is possible that it has no solid inner core, or that its core is not currently cooling, so that the entire liquid part of the core is at approximately the same temperature.[citation needed] Another possibility is that its core has already completely solidified.[citation needed]

ORBIT AND ROTATION
Venus orbits the Sun at an average distance of about 108 million km, and completes an orbit every 224.65 days. Although all planetary orbits are elliptical, Venus is the closest to circular, with an eccentricity of less than 0.01.[1] When Venus lies between the Earth and the Sun, a position known as 'inferior conjunction', it makes the closest approach to Earth of any planet, lying at an average distance of 41 million km.[1] The planet reaches inferior conjunction every 584 days, on average.[1] Due to the decreasing eccentricity of both Earth's and Venus's orbits, the minimum distances will become greater. From 1 to 5383, there are 526 approaches less than 40 million km; then there are none for about 60,200 years.[42] During periods of greater eccentricity Venus can come as close as 38.2 million km.[1]
Venus rotates once every 243 days—by far the slowest rotation period of any of the major planets. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus the time from one sunrise to the next would be 116.75 days,[43] which means that Venus' solar day is actually shorter than Mercury's (176 days). The Sun would appear to rise in the west and set in the east. At the equator, Venus's surface rotates at 6.5 km/h; on Earth, the rotation speed at the equator is about 1,600 km/h.
The present rotation period of Venus represents an equilibrium state between gravitational tidal locking by the Sun that tends to slow the rotation rate, and an atmospheric tide created by the solar heating of Venus' thick atmosphere. The planet may have begun with a different rotation period and obliquity, then migrated to the current state because of chaotic spin changes caused by planetary perturbations. This change in the rotation period likely took place over the course of billions of years.[44]
If viewed from above the Sun's north pole, all of the planets are orbiting in a counter-clockwise direction; but while most planets also rotate counter-clockwise, Venus rotates clockwise in "retrograde" rotation. The question of how Venus came to have a slow, retrograde rotation was a major puzzle for scientists when the planet's rotation period was first measured. When it formed from the solar nebula, Venus would have had a much faster, prograde rotation, but calculations show that over billions of years, tidal effects on its dense atmosphere could have slowed down its initial rotation to the value seen today.[45][46]
A curious aspect of Venus's orbit and rotation periods is that the 584-day average interval between successive close approaches to the Earth is almost exactly equal to five Venusian solar days. Whether this relationship arose by chance or is the result of some kind of tidal locking with the Earth, is unknown.[47]
Venus currently has no natural satellite, though the asteroid 2002 VE68 presently maintains a quasi-orbital relationship with it.[48] According to Alex Alemi and David Stevenson of the California Institute of Technology, their recent study of models of the early solar system shows that it is very likely that, billions of years ago, Venus had at least one moon, created by a huge impact event.[49][50] About 10 million years later, according to Alemi and Stevenson, another impact reversed the planet's spin direction. This caused the Venusian moon gradually to spiral inward[51] until it collided and merged with Venus. If later impacts created moons, those also were absorbed the same manner. The Alemi/Stevenson study is recent, and it remains to be seen what sort of acceptance it will achieve in the scientific community.

OBSERVATION
Venus is always brighter than the brightest stars, with its apparent magnitude ranging from −3.8 to −4.6.[5] This is bright enough to be seen even in the middle of the day, and the planet can be easy to see when the Sun is low on the horizon. As an inferior planet, it always lies within about 47° of the Sun.[5]
Venus 'overtakes' the Earth every 584 days as it orbits the Sun.[1] As it does so, it goes from being the 'Evening star', visible after sunset, to being the 'Morning star', visible before sunrise. While Mercury, the other inferior planet, reaches a maximum elongation of only 28° and is often difficult to discern in twilight, Venus is hard to miss when it is at its brightest. Its greater maximum elongation means it is visible in dark skies long after sunset. As the brightest point-like object in the sky, Venus is a commonly misreported 'unidentified flying object'. U.S. President Jimmy Carter reported having seen a UFO in 1969, which later analysis suggested was probably the planet, and countless other people have mistaken Venus for something more exotic.[52]
As it moves around its orbit, Venus displays phases in a telescopic view like those of the Moon: In the phases of Venus the planet presents a small "full" image when it is on the opposite side of the Sun. It shows a larger "quarter phase" when it is at its maximum elongations from the Sun. Venus is at its brightest in the night sky and presents a much larger "thin crescent" in telescopic views as it comes around to the near side between the Earth and the Sun. Venus is at its largest and presents its "new passes" when it is between the Earth and the Sun. Since it has an atmosphere it can be seen in a telescope by the halo of light refracted around the planet.[5]
Venus's orbit is slightly inclined relative to the Earth's orbit; thus, when the planet passes between the Earth and the Sun, it usually does not cross the face of the Sun. However, transits of Venus do occur in pairs separated by eight years, at intervals of about 121.5 years, when the planet's inferior conjunction coincides with its presence in the plane of the Earth's orbit. The most recent transit was in June 2004; the next will be in June 2012. The preceding pair of transits occurred in December of 1874 and 1882; the following pair will occur in December of 2117 and 2125, 243 years later.[53] Historically, transits of Venus were important, because they allowed astronomers to directly determine the size of the astronomical unit, and hence the size of the solar system. Captain Cook's exploration of the east coast of Australia came after he had sailed to Tahiti in 1768 to observe a transit of Venus.[54][55]
A long-standing mystery of Venus observations is the so-called Ashen light—an apparent weak illumination of the dark side of the planet, seen when the planet is in the crescent phase. The first claimed observation of ashen light was made as long ago as 1643, but the existence of the illumination has never been reliably confirmed. Observers have speculated that it may result from electrical activity in the Venusian atmosphere, but it may be illusory, resulting from the physiological effect of observing a very bright crescent-shaped object.[56]

STUDIES OF VENUS
EARLY STUDIES
Venus was known in the Hindu Jyotisha since early times as the planet Shukra. In the West, before the advent of the telescope, Venus was known as a 'wandering star'. Several cultures historically held its appearances as a morning and evening star to be those of two separate bodies. Pythagoras is usually credited with recognizing in the sixth century BC that the morning and evening stars were a single body, though he thought that Venus orbited the Earth.[57] When Galileo first observed the planet in the early 17th century, he found that it showed phases like the Moon's, varying from crescent to gibbous to full and vice versa. This could be possible only if Venus orbited the Sun, and this was among the first observations to clearly contradict the Ptolemaic geocentric model that the solar system was concentric and centered on the Earth.[58]
The atmosphere of Venus was discovered in 1761 by Russian polymath Mikhail Lomonosov.[59][60] Venus's atmosphere was observed in 1790 by Johann Schröter. Schröter found that when the planet was a thin crescent, the cusps extended through more than 180°. He correctly surmised that this was due to scattering of sunlight in a dense atmosphere. Later, Chester Smith Lyman observed a complete ring around the dark side of the planet when it was at inferior conjunction, providing further evidence for an atmosphere.[61] The atmosphere complicated efforts to determine a rotation period for the planet, and observers such as Giovanni Cassini and Schröter incorrectly estimated periods of about 24 hours from the motions of markings on the planet's apparent surface.[62]
Ground-based research
Little more was discovered about Venus until the 20th century. Its almost featureless disc gave no hint as to what its surface might be like, and it was only with the development of spectroscopic, radar and ultraviolet observations that more of its secrets were revealed. The first UV observations were carried out in the 1920s, when Frank E. Ross found that UV photographs revealed considerable detail that was absent in visible and infrared radiation. He suggested that this was due to a very dense yellow lower atmosphere with high cirrus clouds above it.[63]
90% of the surface Venus appears to be recently solid basalt lava. Spectroscopic observations in the 1900s gave the first clues about Venus's rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus, but found that he could not detect any rotation. He surmised that the planet must have a much longer rotation period than had previously been thought.[64] Later work in the 1950s showed that the rotation was retrograde. Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period which were close to the modern value.[65]
Radar observations in the 1970s revealed details of Venus's surface for the first time. Pulses of radio waves were beamed at the planet using the 300 m radio telescope at Arecibo Observatory, and the echoes revealed two highly reflective regions, designated the Alpha and Beta regions. The observations also revealed a bright region attributed to mountains, which was called Maxwell Montes.[66] These three features are now the only ones on Venus which do not have female names.
The best radar images obtainable from Earth revealed features no smaller than about 5 km across. More detailed exploration of the planet could only be carried out from space.

0 comments: